Global Solutions for the Kuramoto-Sivashinsky Equation Posed on Unbounded 3D Grooves
نویسندگان
چکیده
Initial boundary value problems for the three-dimensional Kuramoto-Sivashinsky equation posed on unbounded 3D grooves (that may serve as mathematical models wildfires) were considered. The existence and uniqueness of global strong solutions well their exponential decay have been established.
منابع مشابه
Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملOn the Stochastic Kuramoto-Sivashinsky Equation
In this article we study the solution of the Kuramoto–Sivashinsky equation on a bounded interval subject to a random forcing term. We show that a unique solution to the equation exists for all time and depends continuously on the initial data.
متن کاملMeromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation
We determine all cases when there exists a meromorphic solution of the ODE νw + bw + μw + w/2 +A = 0. This equation describes traveling waves solutions of the KuramotoSivashinsky equation. It turns out that there are no other meromorphic solutions besides those explicit solutions found by Kuramoto and Kudryashov. The general method used in this paper, based on Nevanlinna theory, is applicable t...
متن کاملInertial Manifolds for the Kuramoto-sivashinsky Equation
A new theorem is applied to the Kuramoto-Sivashinsky equation with L-periodic boundary conditions, proving the existence of an asymptotically complete inertial manifold attracting all initial data. Combining this result with a new estimate of the size of the globally absorbing set yields an improved estimate of the dimension, N ∼ L.
متن کاملGlobal Solutions for Coupled Kuramoto-sivashinsky-kdv System
We study the global smooth solution for the coupled Kuramoto-Sivanshinsky-KdV system in two-dimensional space. The model is proposed to describe the surface waves on multi-layered liquid films. The global solution is obtained for general initial data, using an a priori estimate for the nonlinear system, and the smoothness of such solution is established in t > 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Contemporary mathematics
سال: 2021
ISSN: ['2705-1056', '2705-1064']
DOI: https://doi.org/10.37256/cm.2420211075